

Note

Synthesis of 4-aryl-5-hepta-O-acetyl- β -D-lactosylimino-3-tetra-O-benzoyl- β -D-glucopyranosylimino-1,2,4-dithiazolidine hydrochlorides

M G Dhone^a, P V Tale^b & S P Deshmukh^{b*}

^aShri Mathuradas Mohota College of Science,
Umrer Road, Nagpur, India

^bP G Department of Chemistry, Shri Shivaji College,
Akola 444 001, India
E-mail: Madhudash2001@yahoo.co.in

Received 31 March 2005; accepted (revised) 30 August 2005

4-Aryl-5-hepta-O-acetyl- β -D-lactosylimino-3-tetra-O-benzoyl- β -D-glucopyranosylimino-1,2,4-dithiazolidine hydrochlorides have been prepared by the interaction of 1-tetra-O-benzoyl- β -D-glucopyranosyl-3-aryl thiocarbamides and *N*-hepta-O-acetyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride. The structure of these new 3-*N*-glycosylated-5-*N*-glycosylated-1,2,4-dithiazolidine hydrochlorides have been established on the basis of usual chemical transformations and IR, ¹H NMR and mass spectral studies.

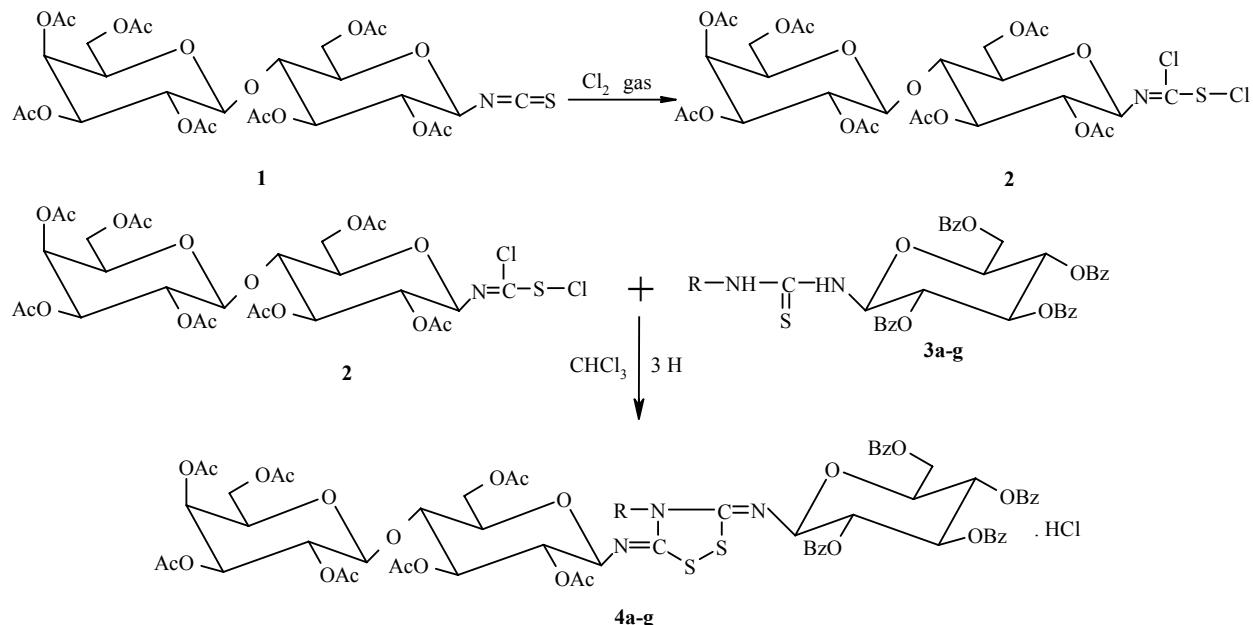
Keywords: Thiocarbamides, isothiocarbamoyl chloride, dithiazolidine hydrochloride

IPC: Int.Cl.⁷ C 07 D

Very few thioamido group containing compounds having lactosyl and glucosyl substituent on nitrogen have been reported and tested for their biological activity¹⁻³. In view of our interest in the synthesis of newer types of 1,2,4-dithiazolidines report herein the simple method for the synthesis 1,2,4-dithiazolidine containing glucosyl⁴ and lactosyl substituent by the interaction of 1-tetra-O-benzoyl- β -D-glucopyranosyl-3-aryl thiocarbamides and *N*-hepta-O-acetyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride. Required 1-tetra-O-benzoyl- β -D-glucopyranosyl-3-aryl thiocarbamides have been prepared by already known method⁵ and *N*-hepta-O-acetyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride was prepared for the first time by the interaction of hepta-O-acetyl- β -D-lactosyl isothiocyanate with chlorine gas. Required hepta-O-acetyl- β -D-lactosyl isothiocyanate was prepared by already known method^{6,7}.

Results and Discussion

4-Aryl-5-hepta-O-acetyl- β -D-lactosylimino-3-tetra-O-benzoyl- β -D-glucopyranosylimino-1,2,4-dithiazolidine hydrochlorides **4a-g** (**Scheme I**) were prepared by the condensation reaction of 1-tetra-O-benzoyl- β -D-glucopyranosyl-3-aryl thiocarbamides **3a-g** and *N*-hepta-O-acetyl- β -D-lactosyl-S-chloro-isothiocarbamoyl chloride **2** in CHCl₃ for 3 hr. After condensation, solvent was distilled off when a sticky residue obtained was triturated with petroleum ether (60-80°) to afford granular pale yellow solid **4a-g** (**Table I**). The products were found to be non-desulphurised when boiled with alkaline lead acetate solution. IR spectra of the products show characteristics of lactose unit in the range of 900-910, 1000-1100, 1200-1300^{8,9} and characteristics of glucosyl unit in the range of 840-900 cm⁻¹¹⁰. ¹H NMR spectra of the products show characteristics of lactose protons at δ 5.8-3.7 (ref. 9) and glucosyl protons in the range at δ 5.89-4.38 (refs. 11 &12).


Experimental Section

General Methods

Optical rotations $[\alpha]_D$ measured on a Equip-Tronics digital polarimeter model no.EQ 800 at 31°C in CHCl₃. IR spectra were recorded on a Perkin-Elmer spectrum RXI (4000-450 cm⁻¹) FTIR spectrometer. ¹H NMR were obtained on a Bruker DRX-300 (300 MHz FT NMR) NMR spectrometer for a sample in CDCl₃ solution with TMS as an internal reference. The mass spectra were recorded on a Jeol SX-102 mass spectrometer.

N-hepta-O-acetyl- β -D-lactosyl-S-chloroisothiocarbamoyl chloride 2. *N*-hepta-O-acetyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride **2** was prepared by the extension of earlier method¹³ by passing calculated quantity of gaseous chlorine into the chloroformic solution of hepta-O-acetyl- β -D-lactosyl isothiocyanate.

Through a chloroformic solution of hepta-O-acetyl- β -D-lactosyl isothiocyanate **1**, (1.28 g, 0.0019 mole in CHCl₃, 5 mL), pure and dry chlorine gas (0.14 g) was passed. During chlorination the temperature of reaction mixture was maintained at 4-5°C by keeping it in freezing mixture. After chlorination the resultant

R=3-4 **a**, phenyl; **b**, *o*-tolyl; **c**, *m*-tolyl; **d**, *p*-tolyl; **e**, *o*-chloro; **f**, *m*-chloro; **g**, *p*-chloro. Bz = -COC₆H₅, Ac = -COCH₃

Scheme I

Table I –Aryl-5-hepta-O-acetyl- β -D-lactosylimino-3-tetra-O-benzoyl- β -D-glucopyranosylimino-1,2,4-dithiazolidine hydrochlorides **4a-g**

Sr. No.	R	Yield (%)	m.p. °C	$[\infty]_D^{31}$ in CHCl_3	R_f	Found	(Calcd) %
						N	S
1	4a	67.65	152	+ 26.88 (<i>c</i> , 1.116)	0.48	2.50 (2.84	4.09 4.33)
2	4b	87.13	139	+ 44.01 (<i>c</i> , 1.136)	0.62	2.96 (2.81	4.42 4.28)
3	4c	67.02	167	+ 80.64 (<i>c</i> , 0.992)	0.54	2.81 (2.81	4.32 4.28)
4	4d	89.81	152	+ 28.62 (<i>c</i> , 1.048)	0.58	2.41 (2.81	4.31 4.28)
5	4e	84.65	102	+ 41.94 (<i>c</i> , 1.192)	0.61	2.67 (2.77	3.98 4.23)
6	4f	52.91	126	+ 9.96 (<i>c</i> , 1.004)	0.68	2.92 (2.77	4.51 4.23)
7	4g	78.04	112	+ 56.17 (<i>c</i> , 1.068)	0.57	2.72 (2.77	4.11 4.23)

yellow solution was mixed with petroleum-ether when a *N*-hepta-O-acetyl- β -D-lactosyl-*S*-chloro isothiocarbamoyl chloride **2** was obtained as a pale yellow oil **2**, (1.42 g), (Found: N, 1.84; S, 4.25. $C_{27}H_{35}O_{17}NSCl_2$ Calcd N, 1.87; S, 4.27%).

Synthesis of 4a-g. The reaction of *N*-hepta-O-acetyl- β -D-lactosyl-*S*-chloro isothiocarbamoyl chloride **2**, 0.0019 mole in CHCl_3 , 5mL and 1-tetra-O-

benzoyl- β -D-glucopyranosyl-3-aryl thiocarbamides **3a-g**, 0.0019 mole in CHCl_3 , 15 mL was carried on boiling water-bath for 3 hr. After condensation, the solvent was distilled off and a sticky residue obtained was triturated with petroleum-ether (60-80°) to afford a pale yellow solid **4a-g**. The product recrystallised from ethanol-water. The purity of the products was checked by TLC; m.p., % yield, Optical rotations, elemental analysis and R_f value are shown in **Table I**.

4a: IR (CHCl₃, cm⁻¹): 3026 C-H(Ar-H), 2980, 2889 C-H(CH₃,CH₂), 1753 (C=O), 1585 (S-C=N), 1532 (C=N), 1315 (C-N), 1229 (C-O), 1069-912 (lactosyl ring deformation), 853 (glucopyranosyl ring deformation), 712 (monosubstituted benzene ring); ¹H NMR (δ , CDCl₃), 8.34-6.69 (25H, m, Ar-H), 5.71-4.55 (10 H, m, lactosyl ring protons), 5.32-4.42 (5H, m, glucopyranosyl ring protons), 4.07-3.76 (6H, d, O-CH₂), 2.15-1.96 (21H, m, -COCH₃); MS (m/z): 1478 (M⁺), 1418 (M-CH₃COOH), 1194 (M-C₁₄H₁₁O₂·2HCl), 1134 (M-C₁₆H₁₅O₄·2HCl), 732 [TBG-NHCH(SH)NHPh⁺], 620 (HAL⁺=C₂₆H₃₆O₁₇⁺), 580 (TBG⁺=C₃₄H₂₈O₉⁺), 560 (HAL-CH₃COOH), 457 (TBG-C₇H₇O₂), 331 (C₁₄H₁₉O₉⁺), 169 (C₁₄H₁₉O₉·C₆H₁₀O₅), 105 (C₆H₅CO⁺), 88 (2CH₃CHO⁺).

4c: IR (CHCl₃, cm⁻¹): 3024 C-H (Ar-H), 2955, 2873 C-H (CH₃,CH₂), 1733 (C=O), 1585 (S-C=N), 1536 (C=N), 1316 (C-N), 1269 (C-O), 1093-903 (lactosyl ring deformation), 854 (glucopyranosyl ring deformation), 801 (1,3-disubstituted ring); 711

(monosubstituted benzene ring); ^1H NMR (δ , CDCl_3), 7.96-6.93 (24H, m, Ar-H), 5.73-4.46 (10H, m, lactosyl ring protons), 5.32-4.97 (5H, m, glucopyranosyl ring protons), 4.10-3.80 (6H, d, O- CH_2), 2.34-2.25 (3H, s, Ar- CH_3), 2.15-1.97 (21H, m, - COCH_3); MS (m/z): 1492 (M^+), 1307 ($\text{M-C}_{13}\text{H}_{13}\text{O}_2$), 819 ($\text{M-C}_{27}\text{H}_{31}\text{O}_{17}\text{NS}$), 786 ($\text{C}_{34}\text{H}_{46}\text{O}_{17}\text{N}_2\text{S}^+$), 744 ($\text{TBGC(=S)NHC}_6\text{H}_4\text{CH}_3^+$), 730 ($\text{C}_{41}\text{H}_{34}\text{O}_9\text{N}_2\text{S}^+$), 637 (TBGNCS^+), 580 ($\text{TBG}^+=\text{C}_{34}\text{H}_{28}\text{O}_9^+$), 331 ($\text{C}_{14}\text{H}_{19}\text{O}_9^+$), 169 ($\text{C}_{14}\text{H}_{19}\text{O}_9\text{-C}_6\text{H}_{10}\text{O}_5$), 136 ($\text{C}_6\text{H}_5\text{COOCH}_3^+$), 105 ($\text{C}_6\text{H}_5\text{CO}^+$).

4g: IR (CHCl_3 , cm^{-1}): 3023 C-H (Ar-H), 2969, 2873 C-H ($\text{CH}_3\text{,CH}_2$), 1740 (C=O), 1585 (S-C=N), 1537 (C=N), 1316 (C-N), 1232 (C-O), 1070-911 (lactosyl ring deformation), 843 (glucopyranosyl ring deformation), 711 (monosubstituted benzene ring), 668 (C-Cl); ^1H NMR (δ , CDCl_3), 7.95-7.27 (24H, m, Ar-H), 5.59-4.46 (10H, m, lactosyl ring protons), 4.97-4.46 (5H, m, glucopyranosyl ring protons), 4.09-3.75 (6H, d, O- CH_2), 2.15-1.97 (21H, m, COCH_3); MS (m/z): 1512 (M^+), 1326 ($\text{M-C}_6\text{H}_6\text{Cl}_2\text{HCl}$), 764 [$\text{TBGNHC(=S)NHC}_6\text{H}_4\text{Cl}$], 648 (HALNHCH_2^+), 640 ($\text{TBGNHCH}_2\text{S}^+$), 580 ($\text{TBG}^+=\text{C}_{34}\text{H}_{28}\text{O}_9^+$), 560 ($\text{HAL=CH}_3\text{COOH}$), 457 ($\text{TBG-C}_7\text{H}_7\text{O}_2$), 442 ($\text{HAL-C}_6\text{H}_{10}\text{O}_6$), 331 ($\text{C}_{14}\text{H}_{19}\text{O}_9^+$), 169 ($\text{C}_{14}\text{H}_{19}\text{O}_9\text{-C}_6\text{H}_{10}\text{O}_5$), 105 ($\text{C}_6\text{H}_5\text{CO}^+$), 88 ($2\text{CH}_3\text{CHO}^+$).

Acknowledgement

The authors acknowledge the help of RSIC, CDRI, Lucknow for providing spectral data. They are also thankful to Principal R N Kale for encouragement and necessary facilities.

References

- 1 Nishikawa Y & Fukuoka F, *Chem Pharm Bull*, 24, **1976**, 387.
- 2 Conrow R B & Bernstein S, *J Org Chem*, 36, **1971**, 863.
- 3 Goodman I, *Adv Carbohydr Chem*, Wolfrom M L, Vol 13, (Academic Press, New York), **1958**, 233.
- 4 Dhone M G & Deshmukh S P, *J Carbohydr Chem*, 23, **2004**, 305.
- 5 Korpe G V & Deshmukh S P, *Oriental J Chem*, 17, **2001**, 307.
- 6 Witczak Z J, *Adv Carbohydr Chem & Biochem*, 44, **1984**, 91.
- 7 Tale P V & Deshmukh S P, *Proceedings of the Indian Science Congress 91st Session*, Chandigarh, **2004**, paper no. 72.
- 8 Varma R, Kulkarni S Y, Jose C I & Pansave V S, *Carbohydr Res*, 133, **1984**, 25.
- 9 Dai Zhiqun, Qu Fangi, Wu Chengtui & Le wei, *J Chem Research (S)*, **2001**, 106.
- 10 Spedding H, *Adv Carbohydr Chem*, Vol 19, (Academic Press, New York), **1964**, 31.
- 11 Reyes Babiano Caballero & Jose Fuentes Mota, *Carbohydr Res*, 54, **1986**, 280.
- 12 Norma B D, Accorsa & Inge M E Thiel, *Carbohydr Res*, 124, **1983**, 177.
- 13 Ottmann G & Hooks H, *J Org Chem*, 31, **1966**, 838.